Lecture 18: Pseudorandom Functions

- Let $\mathcal{G}_{m,n,k} = \{g_1, g_2, \dots, g_{2^k}\}$ be a set of functions such that each $g_i \colon \{0,1\}^m \to \{0,1\}^n$
- This set of functions G_{m,n,k} is called a pseudo-random function if the following holds.
 Suppose we pick g ^{\$} G_{m,n,k}. Let x₁,..., x_t ∈ {0,1}^m be distinct inputs. Given (x₁, g(x₁)), ..., (x_{t-1}, g(x_{t-1})) for any computationally bounded party the value g(x_t) appears to be uniformly random over {0,1}ⁿ

Secret-key Encryption using Pseudo-Random Functions

Before we construct a PRF, let us consider the following secret-key encryption scheme.

• Gen(): Return sk = id $\stackrel{s}{\leftarrow} \{1, \ldots, 2^k\}$

Section 2 Enc_{id}(m): Pick a random r ← {0,1}^m. Return (m ⊕ g_{id}(r), r), where m ∈ {0,1}ⁿ.

3 $\operatorname{Dec}_{\operatorname{id}}(\widetilde{c},\widetilde{r})$: Return $\widetilde{c} \oplus g_{\operatorname{id}}(\widetilde{r})$.

Features. Suppose the messages m_1, \ldots, m_u are encrypted as the cipher-texts $(c_1, r_1), \ldots, (c_u, r_u)$.

- As long as the r₁,..., r_u are all distinct, each one-time pad g_{id}(r₁),..., g_{id}(r_u) appear uniform and independent of others to computationally bounded adversaries. So, this encryption scheme is secure against computationally bounded adversaries!
- The probability that any two of the randomness in r₁,..., r_u are not distinct is very small (We shall prove this later as "Birthday Paradox")
- This scheme is a "state-less" encryption scheme. Alice and Bob do not need to remember any private state (except the secret-key sk)!

- We shall consider the construction of Goldreich-Goldwasser-Micali (GGM) construction.
- Let $G: \{0,1\}^k \to \{0,1\}^{2k}$ be a PRG. We define $G(x) = (G_0(x), G_1(x))$, where $G_0, G_1: \{0,1\}^k \to \{0,1\}^k$
- Let $G' \colon \{0,1\}^k \to \{0,1\}^n$ be a PRG
- We define $g_{id}(x_1x_2...x_m)$ as follows

$$G'\left(G_{x_m}(\cdots G_{x_2}(G_{x_1}(\mathrm{id}))\cdots)\right)$$

Construction of PRF II

Consider the execution for $x = x_1x_2x_3 = 010$. Output z is computed as follows.

PRF

э

We give the pseudocode of algorithms to construct PRG and PRF using a OWP $f: \{0,1\}^{k/2} \to \{0,1\}^{k/2}$

- Suppose $f \colon \{0,1\}^{k/2} \to \{0,1\}^{k/2}$ is a OWP
- We provide the pseudocode of a PRG G: {0,1}^k → {0,1}^t, for any integer t, using the one-bit extension PRG construction of Goldreich-Levin hardcore predicate construction. Given input s ∈ {0,1}^k, it outputs G(s).

• We provide the pseudocode of the PRF $g_{id}: \{0,1\}^m \rightarrow \{0,1\}^n$, where $id \in \{0,1\}^k$, using the GGM construction. Given input $x \in \{0,1\}^m$, it outputs $g_{id}(x)$.

```
g(m, n, k, id, x):
Interpret x = x<sub>1</sub>x<sub>2</sub>...x<sub>m</sub>, where x<sub>1</sub>,..., x<sub>m</sub> ∈ {0,1}
Initialize inp = id
For i = 1 to m:
Let y = G(k, 2k, inp)
If x<sub>i</sub> = 0, then inp is the first k bits of y. Otherwise (if x<sub>i</sub> = 1), inp is the last k bits of y.
Return G(k, n, inp)
```

・ 同 ト ・ ヨ ト ・ ヨ ト